B. Animal-dispersed Seeds:

1. There are at least two ways a seed can be dispersed by an animal. What are they? Explain the difference.
2. If you were walking in the woods and a burr got stuck to your shoe, where would the seed end up? Would the seed be able to germinate and grow in that location? Explain.
3. If you saw a blackbird eating a berry, and it ate the whole thing, seeds and all, and then flew away, where would the seeds end up? Would the seeds be able to germinate and grow in that location? Explain.
4. Calculation: Select (or your teacher will assign) an organism from the chart to the right. Assuming the organism can travel the length of its home range in one day, how far would a burr attached to that organism travel in:
a. One week: \qquad

Animal	Home Range Size/ Avg. Migration Distance
Grey squirrel - male	$2,810,000 \mathrm{~m}^{2}(1676 \times 1676 \mathrm{~m})$
Grey squirrel - female	$750,000 \mathrm{~m}^{2}(866 \times 866 \mathrm{~m})$
Red wolf	$760,000 \mathrm{~m}^{2}(871 \times 871 \mathrm{~m})$
American robin	60,800 meters $(38$ miles $)$ day

Show your calculations below:
b. One month: \qquad
c. One year: \qquad
5. Is the calculation you performed above an accurate indicator of how far your seed will travel? Why or why not? What assumptions were made in the calculation that may not be true in nature?

C. Water-dispersed Seeds:

1. Many plants on the Hawaiian Islands are closely related to plants from Asia, and South America. Considering the map above, how do you think the plants reached Hawaii?
2. Where might seeds from Florida end up?
3. What properties are necessary for seeds to travel such a long distance in salt water?
4. Are you familiar with any seeds that fit this description? List them below.
